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On the asymptotic analysis of surface-stress-driven thin-layer flow
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Abstract. It has been demonstrated experimentally that thin liquid layers may be applied to a solid surface or
substrate if a temperature gradient is applied which results in a surface tension gradient and surface traction. Two
related problems are considered here by means of the long-wave or lubrication theory. In the first problem, an
improved estimate of the applied liquid coating thickness for a liquid being drawn from a bath is found through
asymptotic and numerical matching. Secondly, the theory is extended to consider substrates that are not perfectly
wetted but exhibit a finite equilibrium contact angle for the coating liquid. This extension incorporates the substrate
energetics using a disjoining pressure functional. Unsteady flows are calculated on a substrate of nonuniform
wettability. The finite contact angle value required to stop stress-driven flow is predicted and the resulting steady
profiles are compared with experimental results for several values of the applied stress.
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1. Introduction

For most liquids the surface tensionσ is a decreasing function of temperature. We consider a
liquid layer that is bounded on one side by a solid surface, the substrate, and on the other side
by a surface that is exposed to the atmosphere upon which surface tension acts. If the liquid
layer is sufficiently thin, it is possible to assume that the temperature is virtually constant
across the thin dimension. Then, if the substrate is nonuniformly heated, the temperature
variation will be transferred to the free surface. The dimensionless criterion to be satisfied
is that the Biot number, based on the liquid-film thickness, be very small [1]. The resulting
temperature gradient on the free surface results in an applied shear stress given simply by

τ = σx , (1.1)

wherex is measured along the substrate and subscripts are used to indicate differentiation [2].
The temperature-induced surface stress will contribute to the flow within the liquid layer.

This is the well-known Marangoni effect. A number of basic theoretical studies have been
performed in order to predict the resulting flow for thin liquid layers and isolated droplets on
both flat and curved substrates [1, 3–5]. Recently interest has arisen in small devices that use
this thermocapillary pumping mechanism to move microscopic quantities of liquid in medical
and other applications [6].

Here we will be concerned with a liquid coating layer that is drawn from a bath onto a
vertical plate using Marangoni stresses. Several experiments have been performed using a
vertical plate that is partially submerged in a liquid bath [7–9]. A temperature gradient is
applied to the plate in order to draw liquid upward. Two aspects of this problem will be
considered here, as shown schematically in Figure 1. They are, (i) the prediction of the steady-
state wetting-layer thickness that is drawn upward by use of a nominally-constant applied
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shear stress, and (ii) the motion of the front of the rising liquid layer, particularly on a substrate
of nonuniform surface energy,i.e. for a substrate where the equilibrium contact angle varies
with position. In each of these two problems, within the approximation considered here, flow
could also be driven by another source of applied surface stress such as a tangential wind
stress. As indicated by the broken lines in the figure, the two regions considered are assumed
to be separated by a long region over which the coating layer is flat, with thicknessh∞. Thus,
for the steady-state problem (i), the layer of thicknessh∞ may be assumed to extend infinitely
far upward.

A prediction of the layer thicknessh∞ that is drawn from the bath using the lubrication
approximation was made by Fantonet al. [10]. The method is similar to the well-known
prediction of the coating thickness that is deposited onto a vertical upwardly-moving plate,
as treated by Landau and Levich (viz. Levich [11]). As in the Landau–Levich analysis, the
leading-order prediction neglects the effect of gravity backflow. Compared with the experi-
mental results of Cazabatet al. [8, 9] the predicted values ofh∞ in [10] are somewhat high.
Here we will find the next term in the asymptotic expansion for layer thickness. The corrected
prediction is closer to the experimental measurements. In addition, we solve the problem
using a composite differential equation that is correct to the same order in the small parameter
ε = τ/√ρgσ . Hereρ is liquid density andg is the acceleration of gravity. The two different
estimates are in substantial agreement whenε is small. The gravity correction for the stress-
driven problem is shown to be of logarithmic order; it is thus a more important correction than
the algebraic correction found by Wilson [12] for the Landau–Levich problem. Note that,
although the fractional change in surface tension is small, the shear stress or surface tension
gradient can be quite large. This is because changes in surface tension occur over quite short
distances. Because the fraction change in surface tension is small, assigning a constant average
value toσ in the capillary pressure term in each governing equation only introduces a small
error.

While not discussed further in this paper, an interesting aspect of the experiments of Caz-
abatet al. [8, 9] is an observed transverse instability of the climbing front. This instability
is associated with the appearance of a capillary ridge at the front. Linear stability analyses,
performed by Kataoka and Trojan, provide an explanation for the instability [13, 14]. Recently
we have modeled this unsteady three-dimensional motion and simulated the onset and non-
linear growth of the ‘fingers’ resulting from the instability [15]. Predicted finger shapes are in
close agreement with the interferometric measurements given in [9].

In an earlier experiment, Ludviksson and Lightfoot [7] used a similar apparatus; however
they considered smaller temperature gradients leading to thinner wetting layers. There was
no tendency to form fingers; instead they were concerned with the speed and shape of the
propagating front. Using observed values of the upstream thicknessh∞, and assuming the
front to move at constant speed, Kataoka and Troian employed a lubrication model to get
profile shapes similar to those observed experimentally [13, 14]. However, the observed values
of h∞ are significantly larger than those predicted by the bath withdrawal model and these
large values remain largely unexplained. It should be noted that the withdrawal model predicts
exceedingly small values, virtually of molecular dimensions for the squalane oil that was used.
Carles and Cazabat [16] suggest that, since the experiment was performed with a plate that
was initially partially submerged, insufficient time may have been taken to allow for complete
drainage before the temperature gradient was applied.

In Section 3, we consider a second set of measurements made by Ludviksson and Lightfoot
[7]. They applied a barrier coating of nonwetting material to the substrate. The front was found
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Figure 1. A liquid layer is drawn from a bath by a surface shear stressτ induced by a constant temperature gradient
∇T . Thex-axis represents a solid vertical substrate. The darkened portion of the substrate signifies a region of
larger equilibrium contact angle. Problem (i) is the prediction of the layer thicknessh∞ in bath withdrawal under
steady-state conditions. Problem (ii) concerns the progression of the front tip onto a nonuniform substrate.

to stop at the barrier and the profiles were determined by means of interferometry for several
values of the applied stress. We generalize the lubrication model to include the effect of finite
equilibrium contact angleθe. A universal profile, in terms of dimensionless variables, is found
for liquid fronts that come to rest against a barrier. These profiles are in reasonable agreement
with the experimental results. We will find an analytic expression for the values ofθe necessary
to stop the frontal motion as a function of the physical parameters in the problem. These
angles are remarkably small, much smaller than the contact angle for the strongly nonwetting
coating that was applied in the experiment. Because patterns of coating are applied to control
capillary-driven motions in real and contemplated microscopic devices, as discussed by Gau
et al. [17] for example, predictions of barrier strengths are of importance.

Finite contact angle effects are added to the governing unsteady evolution equation through
an additional interfacial effect known as disjoining pressure. Derived originally to quantify
the magnitude of observed equilibrium contact angles in terms of molecular forces [18, 19],
models incorporating disjoining effects can also be used in dynamic simulations that include
frontal or contact-line motions on substrates that are not perfectly wetting [20–23]. Also
included in Section 3 are dynamic simulations for motion up to and passing a barrier whose
strength is insufficient to stop the flow. The general effect of such barrier passage is to increase
the thickness of the coating layer. Recently unsteady simulations and analysis of thin-layer
stress-driven motions, but without finite contact angle effects, have been reported by Bertozzi
and co-workers [24–26].
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2. The bath withdrawal problem

We wish to predict the thickness of the coating layer drawn from a bath using a given applied
shear stressτ . This is problem (i) in Figure 1. The flow is assumed to be steady. If thex-axis
is taken to point downwards, the constant fluxQ in the drawn layer is given by

Q = σh3

3µ

[
hxx

(1+ h2
x)

3/2

]
x

− τh
2

2µ
+ ρgh

3

3µ
= −τh

2∞
2µ
+ ρgh

3∞
3µ

. (2.1)

The idealized problem assumes that the drawn layer extends infinitely far upward,i.e. x →
−∞, and the thickness ish∞ there. The terms represent, respectively, the capillary pressure
gradient driven flow, flow due to the upward stress and the downward gravity flow. The cap-
illary pressure is proportional to the surface curvatureκ = hxx/(1+ h2

x)
3/2. Far upstream the

curvature is zero andh = h∞. This equation employs the small-slope lubrication approxima-
tion and is equivalent to that used by previous workers [9, 13, 14]. We may derive this equation
from the exact problem formulation by neglecting inertial effects and performing a systematic
expansion in the free-surface slope, a so-called ‘long wave’ expansion, as demonstrated by
Atherton and Homsy [27]. It can be seen from (2.1) that the value of the viscosityµ will not
influence the shape of the steady-state profile.

Note that, to consistent order in the surface slope, the curvature gradient in (2.1) can
simply be replaced byhxxx. However, by retaining the full curvature, we observe that the
equation includes the exact hydrostatic force balanceσκx + ρg = const. whenh→∞. This
limit corresponds to the static meniscus region where the tin layer meets the bath. The static
meniscus represents the ‘outer solution’ to this problem. Equation (2.1) is thus a composite
equation whose solution will give a complete approximation to the profile.

There are three length scales in this problem

L∗ = 2σ

3τ
, Lc =

√
σ

ρg
, h∞

and the scaling isL∗ � Lc � h∞. Outer dimensionless variables are formed by use of the
capillary lengthLc,

h = LcH, x = Lcξ ,
and (2.1) may be rewritten as[

Hξξ

(1+H 2
ξ )

3/2

]
ξ

= εH
2−H 2∞
H 3

−
(

1− H
3∞

H 3

)
. (2.2)

where

ε = Lc

L∗
= 3

2

τLc

σ
= 3

2

τ√
ρgσ

. (2.3)

For given constant values ofε, (2.2) may be integrated numerically by a ‘shooting method’
[28]. The shooting parameter isH∞ whose values are found by a binary search untilH →
“∞” is satisfied. The integration is started on the thin layer. Fourth-order Runge–Kutta inte-
gration is used for this and other initial-value problems treated here.

For a slightly-perturbed coating layer, we linearize Equation (2.2) by assuming
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Figure 2. Dimensionless profileH(ξ) determined by a shooting method forε = 0·01. Numbers shown are values
of the dimensionless wetting layer thicknessH∞. The accurate value isH∞ = 1·942244×10−4. Incorrect profiles
are also shown forH∞ values that are too small and too large.

H = H∞ + g ,
whereg/H∞ << 1. The perturbationg satisfies

gξξξ =
(

2ε

H 2∞
− 3

H∞

)
g ≡ Zg (2.4)

with solution

g = δ exp(kξ) , (2.5)

wherek is the positive real root ofk3 = Z. Equation (2.5) is used to generate initial conditions
for the shooting solution,i.e.

H(0) = H∞ + δ, Hξ (0) = kδ, Hξξ (0) = k2δ, (2.6)

whereδ � 1. In practiceδ is taken several orders of magnitude smaller than the shooting
parameterH∞. The criterion for success is simplyH → ∞ for some positive value ofξ ,
corresponding to the meniscus reaching the level of the bath. IfH∞ is too small, the slopeHξ
will become infinite at finiteH , while forH∞ too large,H will attain a maximum value and
then decrease with increasingξ .

A typical result of the shooting method is shown in Figure 2 forε = 0·01. The figure shows
the dimensionless profileH(ξ) where the vertical plate corresponds to theξ axis and the bath
meniscus is on the right. The accurate value of the wetting layer thickness isH∞ = 1·94244×
10−4 as indicated. Calculated profiles for larger and smallerH∞ values are also shown. When
H∞ is too small, the profile achieves a horizontal tangent at a finiteH value, while for overly
large values,H(ξ) reaches a maximum and then the profile turns back to the substrate. For
a range ofε values, Table 1 compares the wetting-layer thicknesses found by the numerical
shooting method with the results of the matching procedure to be discussed below.



176 L. W. Schwartz

Table 1. Dimensionless coating layer thicknessH∞ as
a function of dimensionless shear stressε.

ε Numerical 2-term expansion (2.25)

10−5 2·13518(10−10) 2·13511(10−10)

10−4 2·13210(10−8) 2·13167(10−8)

10−3 2·1078(10−6) 2·1061(10−6)

10−2 1·9424(10−4) 1·9389(10−4)

0·1 1·2608(10−2) 1·1521(10−2)

0·3 0·0704 0·0534

C.f.: One term result:H∞ ≈ 2·135603ε2.

The shooting solution of the composite equation will be compared with analytic approxi-
mations by the method of matched asymptotic expansions [29]. An equation valid within the
thin layer will be integrated and matched to the capillary-static meniscus at the bath. Define
inner variables according to

h = h∞η, x = Lζ ,
where

L = h2/3
∞

(
2σ

3τ

)1/3

= h2/3
∞ L

1/3
∗ . (2.7)

Equation (2.1) becomes
ηζζ(

1+
(
h∞
L∗

)2/3

η2
ζ

)3/2


ζ

= η2− 1

η3
− ε̂

(
1− 1

η2

)
. (2.8)

with

ε̂ ≡ 2

3

ρgh∞
τ
= h∞
Lc

L∗
Lc
= H∞

ε
.

ε̂ will be shown to beO(ε) whileH∞ isO(ε2).
The inner expansion is

η = η0+ ε̂η1+ · · · , (2.9a)

and the first two orders satisfy

η0ζζζ = η2
0 − 1

η3
0

, (2.9b)

and

η1ζζζ = 3− η2
0

η4
0

η1− 1+ 1

η3
0

. (2.9c)
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Equation (2.9b) is analogous to the Landau–Levich equation for the prediction of the wetting
layer on a drawn plate [11, 12] and is integrated in a similar way by the shooting method. Let
η = 1+ φ, φ � 1, to obtain the linearized form

φζζζ = 2φ +O(φ2) . (2.10)

The exponential growing solution of (2.10) gives the initial conditions

η0(0) = 1+ δ, η0ζ (0) = 21/3δ, η0ζζ (0) = 22/3δ . (2.11)

Unlike the Landau–Levich equation [11, 12]

η0ζζζ = η0− 1

η3
0

, (2.12)

for which it is clear thatη0ζζζ → 0 asη−2
0 for η0 large, for Equation (2.9b) the limiting values

are approached more slowly. Accurate values can still be obtained, however, if we apply a
straightforward refinement.

We seek the limiting valueP1 defined by

η0ζζ → P1 as ζ →∞ .

Thus,η0 approaches the parabola

η0→ P1
ζ 2

2
.

Using (2.9b), we obtain a more accurate expression:

η0ζζ → P1+
∫

dζ

η0
= P1+

∫
2

P1ζ 2
dζ = P1− 2

P1ζ
.

The corrected formula may be reverted to yield

P1 =
[
η0ζζ + 2

ζη0ζζ

]
ζ→∞
+O

(
1

ζ 2

)
, (2.13)

which gives quadratic convergence, allowing equivalent accuracy to that obtainable for the
moving-plate problem that uses (2.12). Marching the numerical solution gives a unique limit-
ing value asζ →∞. It is found to be

η0ζζ → P1 = 1·8211895. (2.14)

The outer solution is the static meniscus satisfying[
Hξξ

(1+H 2
ξ )

3/2

]
ξ

= −1 .

whose shape is known in closed form. We use the profileH(ξ) that has zero slope atξ =
0. Princen [30] gives expressions forH(ψ) and ξ(ψ) whereψ is the positive downward
inclination angle of the static profile with respect to the horizontal. These may be conbined to
yield

H = H0+ 0·53284− 2g − 1

2
log

1− g
1+ g (2.15a)
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where

g = g(ξ) =
√

1− (
√

2− ξ)2
4

, (2.15b)

andH = H0 at ξ = 0.H0 is a matching constant to be determined.
From (2.15) we haveHξξ(0) =

√
2 orhxx(0) =

√
2/Lc. In a common set of variables this

must be equal to the leading-order curvature found from the inner solution. Thus,

η0ζζ = L2

h∞
hxx = h1/3

∞

(
2σ

3τ

)2/3

hxx → h1/3
∞

(
2σ

3τ

)2/3 √2

Lc
.

Solving this forh∞ and using (2.14),

h∞ = P 3
1

(
3τ

2σ

)2
L3
c

23/2
= 9

4

(
P1√

2

)3(
σ

ρg

)3/2 ( τ
σ

)2

or

H∞ = h∞
Lc
= P 3

1

23/2
ε2 ≈ 2·135603ε2 = 4·80511

τ 2

ρgσ
. (2.16)

This may be compared with the slightly larger result of Fantonet al. [10] which isH∞ = 4·84
τ 2/(ρgσ ). The difference between our result and the earlier value is believed to be due to our
use of the quadratically-convergent formula (2.13).

The next-order correction to (2.16) will now be found. The limiting equality

η0ζζζ → 2

P1ζ
2

(2.17a)

can be integrated repeatedly to yield

η0→ P1

2
ζ 2− 2

P1
ζ logζ + Aζ +O(logζ )2 . (2.17b)

The next-order correction for the coating thickness is logarithmically dependent onε and can
be found analytically. For largeζ the equality (2.9c) is approximately

η1ζζζ = −1− η1

η2
0

+O
(

1

ζ 5

)
. (2.18)

Assume a solution of the form

η1 = a0ζ
3+ a1ζ

2 logζ + a2ζ
2+ o(ζ 2);

then

η1ζζζ = 6a0 + 2a1

ζ
.

The right-hand side of (2.18) becomes

−1− 4a0

P 2
1 ζ
+O

(
logζ

ζ 2

)
.

Thus
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η1→−ζ
3

6
+ 1

3P 2
1

ζ 2 logζ +O(ζ 2) .

and

η1ζζ →−ζ + 2

3P 2
1

logζ + · · · .

Differentiaton of expansion (2.9a) now yields

ηζζ = η0ζζ + ε̂η1ζζ + · · · = P1 − ε̂ζ + ε̂ 2

3P 2
1

logζ + · · · . (2.19)

The origin ofζ must be shifted to match the outer solution. With

ζ = ζ1+ ζ̄ (2.20)

we have

η0 = P1

2
ζ̄ 2+ const. = P1

2
(ζ − ζ1)

2+ const. = P1

2
ζ 2− P1ζ1ζ + const.

Comparing with (2.17b), we find that

ζ1 = 2

P 2
1

logζ − A

P1
. (2.21)

Inserting (2.21) in (2.19), we get

ηζ̄ ζ̄ = P1− ε̂ζ̄ − ε̂ζ1+ ε̂ 2

3P 2
1

logζ + · · · = P1 − ε̂ζ̄ − ε̂ 4

3P 2
1

logζ +O(ε̂) . (2.22)

We return to outer variables with the transformations

ε̂ = H∞/ε, ηζ̄ ζ̄ =
H

1/3
∞
ε2/3

Hξξ, ζ̄ = ε1/3

H
2/3
∞
ξ .

Retaining theO(ξ) term from the outer solution (2.15), we have

Hξξ →
√

2− ξ as ξ → 0 .

Thusηζ̄ ζ̄ may be equated to

H
1/3
∞
ε2/3

(
√

2− ξ) = P1− H∞
ε

ε1/3

H
2/3
∞
ξ − 4

3P 2
1

H∞
ε

log

(
ε1/3

H
2/3
∞
ξ

)
+O(ε) . (2.23)

Let the corrected form of (2.23) be

H∞ = P 3
1

23/2
ε2(1+ δ(ε)) , (2.24)

where

δ = O(ε logε) .

Inserting this expression in (2.23) and expanding for smallδ, we obtain
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Figure 3. Numerical solutions for the dimensionless curvatureκ versus distance from the wallH = h/Lc for the
Landau–Levich plate drawing problem, labelledU , and stress-driven problem, labelledτ .

P1(1+ δ)1/3 ≈ P1

(
1+ 1

3
δ

)
= P1−

√
2

3
P1ε log

(
2ε1/3

P 2
1 ε

4/3
ξ

)
.

As ε → 0, this becomes simply

δ = √2ε logε +O(ε) .
From (2.24) the corrected expression forH∞ is

H∞ = 2·135603ε2+ 3·020199ε3 logε +O(ε3) . (2.25)

Values calculated using (2.25) for variousε are shown in Table 1 where they may be compared
with the shooting-method results.

Compared with the leading-order result, Equation (2.25) provides sowewhat closer agree-
ment with the experimental measurement of Fantonet al. [10]. From the experimental values
τ = 0·9 dynes/cm2, σ = 21 dynes/cm, andρ = 0·965 gm/cm3 we have the valueε = 0·00960.
Using thisε, we observe that the leading-order theory predictsh∞ = 0·293µm, while both the
two-term expansion and the shooting-method give 0·266µm. The experimentally measured
thickness was 0·23± 0·06µm, where the error brackets come from measurement uncertainty.
While still too large, the more accurate prediction lies well within the bracketed uncertainty.

It is interesting to compare the profilesh(x) for stress-driven motion as considered here
with those obtained for the Landau–Levich plate withdrawal problem [11]. A composite
equation for plate withdrawal, analogous to (2.2), is[

Hξξ

(1+H 2
ξ )

3/2

]
ξ

= 3Ca
H −H∞
H 3

−
(

1− H
3∞

H 3

)
. (2.26)
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where Ca= µU/σ andU is the constant plate withdrawal speed. Initial conditions for this
composite equation are derived from

gξξξ =
(

3Ca

H 3∞
− 3

H∞

)
g

which is analogous to (2.4). Two profiles are compared in Figure 3 where the dimensionless
curvatureκ = Hξξ/(1+H 2

ξ )
3/2 is plotted versus H. A logarithmic scale is invoked to magnify

the wall region. The curve labeledU is the plate-withdrawal solution, whileτ indicates the
stress-driven case. Values ofε and Ca are selected so thath∞/Lc ≈ 10−4 for each case. Note
that the region in which dynamic effects are important is much larger for the shear-driven
problem. In these cases the profile joins the static meniscus at a far greater distance from the
wall.

3. Thin-layer motion on nonuniform substrates

In the earlier experiment of Ludviksson and Lightfoot [7] a coating of nonwetting material was
applied to the substrate in order to control the motion of the liquid. Here we will generalize
the lubrication model to include finite-contact-angle effects. We will be concerned with the
unsteady motion of a thin layer whose thickness is constant far upstream; specifically we
consider problem (ii) shown in Figure 1. The slope of the free surface relative to the substrate
will be assumed to be uniformly small, so that the lubrication approximation can continue to
be used.

Problem (ii) involves the motion of a three-phase contact line,i.e. a line where the solid
substrate, the advancing liquid, and vapor or vacuum meet. It is well known that such a prob-
lem requires special treatment. Unless the no-slip boundary condition for the liquid motion
on the solid substrate is relaxed in the vicinity of the contact line in some way, one obtains
the anomalous result that infinite force is required to move the contact line [31]. A number of
modifications that allow motion of the contact line were compared by Moriarty and Schwartz
[32]. They found that, apart from the immediate vicinity of the contact line, each choice of
relief mechanism yielded the same set of moving liquid profiles. The simplest modification
is to ‘pre-wet’ the substrate ahead of the moving contact line with a very thin layer of the
liquid, i.e. a slip layer [28]. In addition, for liquids that do not spread spontaneously onto
the substrate, a static or equilibrium contact angleθe is observed. By appending a disjoining
pressure term to the usual capillary pressure, it is possible to prescribe both the thickness of
the slip layer and the contact angleθe, as explained below.

Returning to the lubrication approximation in dimensional variables, with upward surface
traction and downward gravity flow, we observe that the flux is given by

Q = − h
3

3µ
px + τh

2

2µ
− ρgh

3

3µ
. (3.1)

The pressurep is composed of the usual capillary pressure associated with free-surface cur-
vature and a disjoining pressure component that can be used to specify an equilibrium contact
angleθe. θe will be taken to vary with position on the substrate. Thus

p = −σhxx −5 , (3.2)

where we will use
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Figure 4. Left: Two different forms of the disjoining pressure function5 plotted versus liquid layer thicknessh.
Right: The contact-line force balance using disjoining pressure.θe is the static or equilibrium contact angle.

5 = K
(
h∗

h

)2(
h∗

h
− 1

)(
h∗

h
− c

)
. (3.3)

This function represents an assumed interaction between the substrate and the liquid free sur-
face. The constanth∗ plays the role of a slip coefficient, whileK will be shown to incorporate
information about the equilibrium angleθe.

The form of5 used here is only one of a number of possible choices, since the full details
of the molecular interactions in real systems are not known. Different exponents onh could
have been used, for example. The formula (3.3) does include the two basic behaviors that
allow for a finite value ofθe to be specified. Typically schematic plots of5(h) are shown
in Figure 4. If the constantc is taken to be zero,5 < 0 for h > h∗. In that case, layers
thicker thanh∗ will be attracted downward. That is the case indicated by (I) in the figure.
Alternatively, as indicated by (II), ifc > 0, sufficiently thick layers will be stable and the
disjoining pressure will become repulsive forh > h∗/c. Each of these forms is possible and
the particular choice depends on the specific liquid-substrate material system, as discussed by
Teletzkeet al.[20] and Churaev and Sobolev [18]. We have performed dynamic simulations in
related problems with various exponent choices and find that appreciable differences in profile
shape only occur in the immediate neighborhood of the apparent contact line, while the larger
scale dynamics is virtually the same [22, 23].

Associated with5 is a disjoining energy density

e(d)(h) = −
∫ h

h∗
5(h1) dh1 . (3.4)

which represents the work done against disjoining pressure in displacing an element of the
liquid-air interface from its equilibrium valueh = h∗. Consider a wedge of liquid that meets
the apparent substrate and whose ultimate thickness is large when measured in units ofh∗; i.e.
we considerh/h∗ → ∞. Integration of (3.4) yields

e(d)(∞) = Kh∗
(

1

6
− c

2

)
. (3.5)

The right side of Figure 4 shows the static force balance at the effective ‘contact line,’ where
a thick layer meets the slip layerh = h∗. From the figure, whenθe is small,
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e(d)(∞) = σ (1− cosθe) ≈ σθ2
e

2
. (3.6)

Equating the two expressions fore(d)(∞), we obtain an explicit expression forK in terms of
the contact angle

K = 3σθ2
e

h∗(1− 3c)
,

indicating that the meaningful range forc is 0≤ c < 1/3. When5 is inserted in the evolution
equation, it provides a method for modeling motion on substrates that exhibit a finite static
contact angle. Moreover, it will illustrate the way in which lack of perfect wetting influences
motion. Disjoining pressure was introduced in order to explain the molecular origins of static
contact angles. For particular material systems, some progress can be made in calculating the
exponents and constants that appear in an expression such as (3.3) from first principles [33].
The important features of (3.3), in a dynamic study, are the values ofθe andh∗ and the fact
that there is a single stable minimum of the energy functionale(d)(h;h∗).

Ludviksson and Lightfoot [7] include results of a series of experiments where a barrier of
non-wetting coating was applied to the substrate. As expected, the wetting front stopped at
this barrier. We will consider these results as a special case of unsteady motions on substrates
with barriers.

With motion in the direction ofx increasing, we may form an unsteady evolution equation
using the integral mass conservation condition

ht = −Qx (3.7)

whereQ is given by (3.1) and (3.2). A number of parameters can be removed by the scaling

t = T ∗ t̃ , x = Lx̃, h = h0h̃ , (3.8)

whereh0 = 3τ/(2ρg), L = h
1/3
0 L

2/3
c , T ∗ = 3µL4/(σh3

0), and, as before,Lc = √σ/(ρg).
The dimensionless evolution equation with tildes omitted is

ht = −
[
h3hxxx + h2− h3

]
x
−
[
h3
(
D5̃

)
x

]
x
. (3.9)

Here

5̃ =
(
h∗

h

)(
h∗

h
− 1

)(
h∗

h
− c

)
. (3.10)

Dimensionless variables are used on the right of (3.10) and

D = 3

(
Lc

h∗

)(
Lc

h0

)1/3
θ2
e

1− 3c
. (3.11)

For a steady solution in laboratory-fixed coordinates we haveQ = 0; then, in dimension-
less terms,h = 1 is the layer thickness far upstream wherepx = 0. Since disjoining effects are
only important whenh ∼ O(h∗) andh∗ << 1, a universal steady-state differential equation,

hxxx = h− 1

h
, (3.12)
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Figure 5. Comparison of calculated steady profiles at a barrier with experimental data of Ludviksson and Light-
foot [7] (symbols). The shear stress values, taken from the experiment results, areτ = 0·084, 0·127, and
0·185 dynes/cm2.

determines the steady profile away from the apparent contact line. There is an essentially
unique solution of (3.12) that meets the substrate. The initial conditions are found from the
upstream approximate solution

h ≈ 1− δ exp(kx) , (3.13)

whereδ is a small positive number. The linearized form of (3.12) shows thatk = 1. Runge-
Kutta integration of (3.12) yields the universal static profile. This effective outer solution has
finite contact slopeKs ath = 0. If the profile is translated so that the contact point corresponds
to x = 0, a local solution there is

h ∼ Ksx̂ + x̂2

2Ks
log x̂ +O(x̂2) , (3.14)

wherex̂ = −x is used here. From the initial condition (3.13), the universal value

Ks = 1·34544. . . (3.15)

is found by integration.
Ultimate profiles at a barrier may be calculated from the evolution equation (3.9) with

rather general initial conditions. The equation is written in finite-difference form. An im-
plicit time-marching algorithm has been implemented leading to greatly improved numerical
stability and the ability to use much larger time steps. Generally speaking, the method is a
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higher-order generalization of the Crank–Nicolson method that is commonly used to solve
the heat equation. Additional details of the numerical method may be found elsewhere [34,
35]. The contact angle variationθe(x) is prescribed and is taken to rise rapidly from zero to a
finite value in a particular region of the substrate. When the moving front reaches the barrier
region it stops and, after a period of adjustment to the upstream thickness, the entire profile
becomes steady. Calculated profiles are compared with the experimental results of Ludviksson
and Lightfoot in Figure 5. Three different values of imposed shear stress are shown; each is
derived from the measured temperature gradient and the measured dependence of surface ten-
sion on temperature. The agreement is credible but not perfect. Better agreement is observed
for the smallestτ value. The three data points marked by (x) are said to be applicable to all
profiles. Thus, Ludviksson and Lightfoot [7] maintain that the contact angle is independent
of τ ; this differs from the result of the present analysis. We can predict the actual contact
angleθ∗e required to arrest the stress-driven motion, using the value forKs and returning to
dimensional quantities via (3.8):

θ∗e ≈ Ks
h0

L
= 1·762

(
τ√
σρg

)2/3

. (3.16)

For τ = 0·185 dynes/cm2, which is the largest shear stress applied in the barrier experiments
of Ludviksson and Lightfoot, the predicted contact angle required to stop the motion isθ∗e ≈
1·1 degrees. Thus, the strongly nonwetting coating that they applied was far stronger than
needed to arrest the motion of the contact line.

Figure 5 shows that unsteady solutions each approach the universal steady state if the
barrier ‘height’, meaning the maximum equilibrium contact angle, is sufficiently high. The
specific value of maximum contact angle used in the numerical solution of (3.9) was 1·2◦. The
slip layer thicknessh∗ was taken to be 50 nanometers, an arbitrarily chosen but realistically
small value. In Figure 5 the direction of motion is from right to left. This is the direction used
in the original plot of the experimental data given in [7].

Two of the three final profiles from Figure 5 are replotted in Figure 6 in dimensionless
variables. The universal solution from (3.12) is also shown as a line. The symbols use the
extreme values of shear stress in the experiments,τ = 0·084 dynes/cm2 and 0·185 dynes/cm2,
respectively. The layer thicknessh is measured in units of 3τ/(2ρg) so that the limiting height
far away from the barrier is one. In these units, the dimensionless slip layer thickness depends
on τ , as shown in the figure. Because the barrier is quite steep,i.e. the contact angle changes
from zero to 1·2◦ over a short distance on the substrate, the unsteady profiles stabilize in
almost the same position. The origin of the universal solution is arbitrary. It was shifted so as
to illustrate the self similarity of the steady profiles.

Results of another unsteady calculation are shown in Figure 7. Here the barrier ‘height’ was
taken to be smaller than the value required to stop the motion; specifically the contact angle
θemax is 60 per cent of the critical value ofθ∗e ; given by (3.16). The dimensionless slip-layer
thickness ish∗ = 0·02. The calculation used 2500 unknown values ofh and a point-spacing
interval1x = 0·025.

The direction of motion is from left to right and values of the dimensionless time are shown
on each profile. To the left of the barrierθe = 0. An initial profile was arbitrarily chosen to
be an inverse tangent curve connecting the uniform upstream thickness and the slip layer. The
argument of the inverse tangent is scaled so that 70 per cent of the jump inh occurs in 0·2
x units. Similarly, the contact-angle functionθe(x) is also an arc tangent whose argument
is scaled so that 70 per cent of the jump occurs in 1·0 x units. The profile is seen to quickly
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Figure 6. Unsteady calculations are compared with the universal outer solution (line) using dimensionless vari-
ables. Each unsteady solution using the same physical slip layerh∗ = 50 nm. The symbols correspond to the two
extreme experimental values of shear stressτ = 0·084 dynes/cm2 and 0·185 dynes/cm2.

Figure 7. Unsteady calculation of a moving front involving the evolution equation (3.9). The equilibrium contact
angleθe is a function of substrate position and ‘ramps up’ from zero, on the left of the arrow to a finite value on the
right. The final value ofθe is too small to stop the motion. Dimensionless time values are shown for each profile.

reform into a unique steadily-propagating shape that is determined by the upstream height and
h∗. Upon reaching the location of the barrier, indicated by an arrow in the figure, the profile
temporarily slows and forms a hump. Ultimately the upstream height is adjusted upward. This
is a simple illustration of the manner in which substrate contact-angle variation may be used
to adjust the shape of a flowing stream. The calculation of Figure 7 was repeated using the
second form of disjoining pressure withc = 0·1, as indicated by (II) in Figure 4. Quite similar
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results were obtained; the major difference was that final height after barrier passage was
slightly higher.

Concluding remarks

Two aspects of shear-stress driven flow have been considered. Estimates of coating thicknesses
produced under steady-state conditions of bath withdrawal have been refined using two differ-
ent methods. Each of these account for the gravitational backflow into the bath. Provided that
the shear stress is not large, they are in substantial agreement with one another and provide
an improved agreement with the experimental result of Fantonet al. [10]. The asymptotic
expansion has been extended to include a term of orderε3 logε. This term is missing from the
expansion for the related Landau-Levich problem of plate withdrawal where the correction
term is of orderε3, as found by Wilson [12]. The wall region, where viscous effects are
important, is thicker for the stress problem. We believe that extension of the solution to order
ε3 for the stress case may require a third or intermediate, matching region [29].

An unsteady evolution equation has been introduced to model motion on a substrate of
non-zero and variable contact angle. The critical value of contact angleθ∗e required to stop the
motion has been found and is predicted to be proportional to the two-thirds power of applied
shear stress. The actual values ofθ∗e are remarkably small, far smaller than that of the ‘strongly
nonwetting’ coating applied by Ludviksson and Lightfoot [7] to arrest the motion. Our results
concerning the behaviorθ∗e differ qualitatively from a conjecture given in [7]. Those authors
had suggested that there is a universal value ofθ∗e , for a particular liquid-solid system, that is
independent of the driving stressτ . For smaller contact angle changes, it has been shown that
the shape of the moving liquid stream can be modified and controlled by the pre-set variation
in contact angle. Possible applications include thermocapillary pumping devices and other
microscopic liquid transport mechanisms.
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